Arranging Your Virtual Network
on FreeBSD

Michael Gmelin (grembo@FreeBSD.org)

January 2020

CONTENTS CONTENTS

Contents

Introduction 3
Document Conventions. e 3
License e 3

Plain Jails 4
Plain Jails Using Inherited IP Configuration 4
Plain Jails Using a Dedicated IP Address 5
Plain Jails Using a VLAN IP Address 6
Plain Jails Using a Loopback IP Address. 7

Adding Outbound NAT for Public Traffic 7
Running a Service and Redirecting Trafficto It 9

VNET Jails and bhyve VMs 10
VNET Jails Using sysutils/poto v i 10
VNET Jails Using sysutils/iocage i 13

Managing Bridges 13
Adding bhyve VMs and DHCP to the Mix 16
Preventing Traffic Between VNET Jails/VMs 17
Firewalling Inside VNET Jails/VMs 20

VXLAN 22
VXLAN Example Overview 22
Gateway Configuration L Lo 24
Jailhost-a oL 25

Network Configuration (jailhost-a) 25

VM Configuration (jailhost-a) Lo 26

Jail Configuration (jailhost-a) 27
Jailhost-b oo 27

Network Configuration (jailhost-b) 27

Plain Jail Configuration (jailhost-b) 28

Network Switch Setup (jailhost-b) 29

VNET Jail Configuration (jailhost-b) 30

VM Configuration (jailhost-b) o 30
VXLAN Multicast Troubleshooting 31

Conclusion and Further Reading 33

2020-01-08 (final) 2 CC BY 4.0

INTRODUCTION

Introduction

Modern FreeBSD offers a range of virtualization options, from the traditional jail environment
sharing the network stack with the host operating system, over vnet jails, which allow each jail
to have its own network stack, to bhyve virtual machines running their own kernels/operating
systems.

Depending on individual requirements, there are different ways to configure the virtual network.
Jail and VM management tools can ease the process by abstracting away (at least some of)
the underlying complexities.

Document Conventions
This article is based on FreeBSD 12.1-RELEASE, the latest release version of FreeBSD at the
time of writing. It assumes that ZFS is used on hosts running jails and bhyve VMs.

Unless noted otherwise, packages used in examples are from FreeBSD’s quarterly branch
2019Q4'. Using the quarterly package repository is the default configuration on a freshly
installed FreeBSD system.

All examples are limited to IPv4 for the sake of simplicity.

This article introduces various jail and VM management tools, even though everything shown
could be configured directly without installing any packages by modifying system configuration
files like /etc/jail.conf manually.

Code and terminal interaction/output is formatted like this.
Sometimes (but not always) the output of commands is shown in examples for clarity.

Man page references are formatted in italics, specifying the manual section in parentheses;
e.g., security(7) refers to the security man page, which can be displayed by typing man 7
security, or man security, as there are no other man pages of that name in the manual.

FreeBSD package references are formatted in italics, using the port’s origin, which consists of
<category>/<name>, e.g., security/sudo, which can be installed as a binary package (pkg
install sudo) or from ports (cd /usr/ports/security/sudo && make install clean).

License

This work is licensed under a Creative Commons Attribution 4.0 International License (CC
BY 4.0)%.

Thttps://svnweb.freebsd.org/ports/branches/2019Q4/
2https://creativecommons.org/licenses /by /4.0/

2020-01-08 (final) 3 CC BY 4.0

https://svnweb.freebsd.org/ports/branches/2019Q4/
https://creativecommons.org/licenses/by/4.0/

PLAIN JAILS

Plain Jails

Plain (as in non-VNET) jails share the network stack with the jailhost they’re running on.
Therefore, network configuration and firewalling are done on the jailhost and not inside of the
jail. They are the traditional way of creating jails and despite their limitations still very useful
when it comes to containing software, filesystems, and services. E.g., ports-mgmt/poudriere,
FreeBSD’s bulk package builder and port tester, makes heavy use of plain jails.

Plain Jails Using Inherited IP Configuration

The most basic option is running a jail that inherits its network configuration (all interfaces/IP
addresses) from the jailhost. This is a common setup if the jail is mostly used as a container
to keep the jailhost (the host the jails run on) “clean” of dependencies. This way the host
only requires a minimal number of packages (basics like security/sudo, shells/bash, and
sysutils/tmux), while application jails can be snapshotted, backuped, and managed/moved
separately.

Example of how to configure, run, and destroy a simple jail using sysutils/iocage:
root@jailhost:~ # pkg install py36-iocage
root@jailhost:~ # iocage activate zroot

ZFS pool 'zroot' successfully activated.
root@jailhost:~ # iocage create -r 12.1-RELEASE -n simplecage ip4=inherit

simplecage successfully created!
root@jailhost:~ # iocage console -f simplecage

root@simplecage:~ # fetch -q -o - http://canhazip.com
<your public facing IP shown here>

root@simplecage:~ # logout

root@jailhost:~ # iocage destroy -f simplecage

Stopping simplecage
Destroying simplecage
root@jailhost:~ #

Note: This inherits all interfaces and copies the resolver configuration from the jailhost.

Same example using sysutils/pot, an alternative jail manager that aims to provide container-like
features and sysutils/nomad integration:

root@jailhost:~ # pkg install pot

£c.>c'>t@jailhost:~ # pot init

1.‘(.)(‘)t@jailhost:~ # pot create-base -r 12.1
l'"c'Jc‘>t@jailhost:~ # pot create -p simplepot -b 12.1
£é>£>t@jailhost:~ # pot run simplepot

root@simplepot:~ # fetch -q -o - http://canhazip.com
<your public facing IP shown here>

2020-01-08 (final) 4 CC BY 4.0

Plain Jails Using a Dedicated IP Address PLAIN JAILS

root@simplepot:~ # exit

root@jailhost:~ # pot destroy -Fp simplepot
===> Destroying pot simplepot
root@jailhost:~ #

Note: sysutils/pot is an evolving project, so you might want to grab the wversion from
FreeBSD’s latest branch by modifying /etc/pkg/FreeBSD.conf or install it from ports
(/usr/ports/sysutils/pot). Make sure to set POT_EXTIF in /usr/local/etc/pot/pot.cfg in case
your network interface name isn’t “em0”.

Plain Jails Using a Dedicated IP Address

In case a bit more separation is wanted, a dedicated static IP address can be assigned. This
prevents a jail from listening to ports used by the jailhost, e.g., permitting to ssh(1) directly
into a jail listening to the standard port (22).

In the example below, the jailhost uses 192.168.0.2 as its primary IP address, 192.168.0.1 as
the default gateway, and 192.168.0.3 is added as an additional TP address to be used by the
jail. The goal is to create a jail on its dedicated static IP address on the local network and
run sshd(8) inside.

This assumes that the jailhost has its secure shell daemon configured to listen only to the
relevant IP address, by setting ListenAddress to 192.168.0.2 in /etc/ssh/sshd__config and
reloading it by running service sshd reload.

Static LAN IP jail example using sysutils/pot:

root@jailhost:~ # pot create -p aliaspot -b 12.1 -N alias -i 192.168.0.3
===> (Creating a new pot

===> pot name : aliaspot

===> type : multi

===> Dbase : 12.1

===> pot_base :

===> level : 1

===> network-type: alias

===> ip : 192.168.0.3

===> dns : inherit
root@jailhost:~ # pot run aliaspot

root@aliaspot:~ # service sshd enable
sshd enabled in /etc/rc.conf
root@aliaspot:~ # service sshd start

root@aliaspot:~ # exit
root@jailhost:~ # sockstat -41j aliaspot

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sshd 7324 3 tcp4 192.168.0.3:22 * 1k
root sendmail 7183 3 tcp4d 192.168.0.3:25 * 1k
root syslogd 7102 5 wudp4 192.168.0.3:514 * 1k

root@jailhost:~ # pot destroy -Fp aliaspot
===> Destroying pot aliaspot
root@jailhost:~ #

2020-01-08 (final) 5 CC BY 4.0

Plain Jails Using a VLAN IP Address PLAIN JAILS

You can run ifconfig(8) in various stages of the provisioning process to understand when the
IP alias (192.168.0.33/32) is added /removed to/from the interface. Depending on the use case,
it might also make sense to add aliases permanently in the jailhost’s /etc/rc.conf.

Note: In such a static single IP configuration, the jail’s only IP address also (magically) serves
as localhost, which can be confusing at times and also means that services that usually listen to
localhost and therefore are not reachable from the outside world (such as sendmail _submit in
the example above) are suddenly exposed. So, it’s important to firewall services on the jailhost
properly in such a setup (following the best practice of blocking all traffic by default). It’s
possible to add unique loopback addresses (like 127.0.0.2/8) to a jail, but given the additional
complezity this introduces, doing so is only worth the effort in a limited number of use cases.

Plain Jails Using a VLAN IP Address

A variation of the previous setup is to configure the jail to listen to IP addresses on a dedicated
(private) network, either by using a dedicated interface or by adding VLAN interfaces to an
existing physical interface. This provides a better segmentation of the network and allows to
deploy central filtering, outbound network address translation (NAT), and inbound redirection
(DNAT) of network traffic.

In the example below, a VLAN interface (VLAN tag 101, 10.1.1.1/24) is configured on the
jailhost (interface “em0”) and put to use in a jail configured using sysutils/iocage:

rootQ@jailhost:~ # sysrc ifconfig_em0_101="10.1.1.1/24"
ifconfig _em0_101: -> 10.1.1.1/24
root@jailhost:~ # ifconfig em0.101 create
root@jailhost:~ # iocage create \
-r 12.1-RELEASE -n vlancage ip4_addr="em0.101/10.1.1.2"

vlancage successfully created!
root@jailhost:~ # iocage console -f vlancage

root@vlancage:~ # ifconfig -g vlan
em0.101
root@vlancage:~ # ifconfig em0.101
em0.101: flags=8843<UP,BROADCAST,RUNNING, SIMPLEX,MULTICAST> metric O \
mtu 1500
options=3<RXCSUM, TXCSUM>
ether f4:4d:30:aa:bb:cc
inet 10.1.1.2 netmask Oxffffffff broadcast 10.1.1.2
groups: vlan
vlan: 101 vlanpcp: O parent interface: emO
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active
root@vlancage:~ # logout
root@jailhost:~ # iocage destroy -f vlancage

Stopping vlancage
Destroying vlancage
root@jailhost:~ #

This assumes that firewalling and NAT happen on a different host/appliance on your network.

2020-01-08 (final) 6 CC BY 4.0

Plain Jails Using a Loopback IP Address PLAIN JAILS

As the host already has an IP address configured (10.1.1.1/24), adding the jail’s IP address as
an alias host address (netmask /32) is exactly what was wanted. This also helps configuration-
wise, as it allows things like configuring static routes before jails are started and setting up
firewall rules based on the interface’s network configuration.

In case the jail should use the interface’s primary IP address, it’s important to configure the
IP address and netmask exactly like they’re configured on the VLAN interface. In the example
above this would mean setting ip4_addr="em0.101[10.1.1.1/24". jocage(8) is smart enough
to not remove the jail’s IP address from an interface if it was already configured prior to
starting the jail.

Hint: Like most network interfaces, it’s possible to name VLAN interfaces semantically; see
re.conf(5) (man rc.conf) for details.

Plain Jails Using a Loopback IP Address

Under some circumstances, e.g., if the number of IP addresses you can assign to your LAN
interface is limited and/or all you are maintaining is a single jailhost, it might make sense to
have the jail listen to a local loopback interface. In this case you usually use a local firewall to
NAT outbound traffic and redirect inbound traffic (if necessary).

In the sysutils/iocage example below, a dedicated local interface named lo1, holding the TP
address 172.31.255.17/32, is created to serve the jail. In this example the IP address is already
assigned by the jailhost on boot and not by sysutils/iocage when starting the jail:

root@jailhost:~ # sysrc cloned_interfaces+="lol"

cloned_interfaces: -> lol

root@jailhost:~ # sysrc ifconfig lo1="172.31.255.17/32"

ifconfig _lol: -> 172.31.255.17/32

root@jailhost:~ # ifconfig lol create

root@jailhost:~ # ifconfig lol

lol: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric O mtu 16384
options=680003<RXCSUM, TXCSUM, LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
inet 172.31.255.17 netmask Oxffffffff
groups: lo
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

root@jailhost:~ # iocage create \

-r 12.1-RELEASE -n locage ip4_addr="1lo1|172.31.255.17/32"

locage successfully created!
root@jailhost:~ # iocage console -f locage

root@locage:~ # host freebsd.org
;; connection timed out; no servers could be reached

root@locage:~ # logout
root@jailhost:~ #

Adding Outbound NAT for Public Traffic

At this point the jail exists but has no way to communicate with the outside world. This can
be fixed by adding an outbound NAT rule to the firewall.

2020-01-08 (final) 7 CC BY 4.0

Plain Jails Using a Loopback IP Address PLAIN JAILS

Warning: Enabling/configuring a firewall is a grealt way to lock yourself out of a machine.
Make sure you have a plan in place on how to regain access in case this happens to you
accidentally.

In this example the pf(4) (packet filter) firewall is used. It is assumed that there is no firewall
configured yet.

The following /etc/pf.conf is created:

ext_if="emO"
www_jail="172.31.255.17"

outbound NAT for www jail on jailhost's primary IP address
nat on $ext_if from $www_jail -> $ext_if:0

redirect www traffic into jail
rdr on $ext_if proto tcp to $ext_if:0 port www -> $www_jail

don't interfere with jailhost's localloop
set skip on 1lo0

prevent spoofing
antispoof for 1o0
antispoof for lol
antispoof for $ext_if

block all by default (best practice)
block

allow any traffic from jail that doesn't go to the jailhost
(includes traffic inside of the jail to itself)
pass from $www_jail to !$ext_if:0

allow access to web server
pass proto tcp to $www_jail port www

allow access to manage host
pass in on $ext_if proto tcp to $ext_if:0 port ssh

allow outbound traffic
pass out on $ext_if

Next, pf(4) is enabled and outbound connectivity is verified to work as expected:

root@jailhost:~ # service pf enable
pf enabled in /etc/rc.conf
root@jailhost:~ # service pf start
(session drops)
root@jailhost:~ # iocage console -f locage
root@locage:~ # fetch -q -o - http://canhazip.com
<your public facing IP shown here>
root@locage:~ # logout
root@jailhost:~ #

2020-01-08 (final) 8 CC BY 4.0

Plain Jails Using a Loopback IP Address PLAIN JAILS

Running a Service and Redirecting Traffic to It

Now that there is outbound connectivity within the jail, let’s install www/nginz inside to
serve static content. The necessary firewall rules are already in place (check the rdr and pass
rules that were configured earlier):

root@jailhost:~ # grep -Bl "port www" /etc/pf.conf

redirect www traffic into jail

rdr on $ext_if proto tcp to $ext_if:0 port www -> $www_jail
allow access to web server

pass proto tcp to $www_jail port www

root@jailhost:~ # iocage console -f locage

root@locage:~ # pkg install nginx

root@locage:~ # rm /usr/local/www/nginx

root@locage:~ # mkdir /usr/local/www/nginx

root@locage:~ # echo "Hello Jail" >/usr/local/www/nginx/index.html
root@locage:~ # service nginx enable

nginx enabled in /etc/rc.conf

root@locage:~ # service nginx start

Performing sanity check on nginx configuration:

nginx: the configuration file /usr/local/etc/nginx/nginx.conf syntax is ok
nginx: configuration file /usr/local/etc/nginx/nginx.conf test is\
successful

Starting nginx.

root@locage:~ # logout

root@jailhost:~ # fetch -q -o - http://172.31.255.17

Hello Jail

root@jailhost:~ #

Accessing the web server hosted within the jail from the outside should work at this point and
can be verified by pointing a web browser to the server’s primary IP address.

Warning: Even though it’s possible to create clean and easy to understand configurations
this way, these setups don’t scale very well and can get quite a hassle to maintain. Also,
even though it’s possible to firewall between the various jails to a certain extent, it’s not very
practical and therefore VNET jails should be preferred.

2020-01-08 (final) 9 CC BY 4.0

VNET JAILS AND BHYVE VMS

VNET Jails and bhyve VMs

VNET(9) - the network subsystem virtualization infrastructure - is a technology to virtualize
the network stack.

Even though VNET first appeared in FreeBSD 8.0, it was considered an experimental feature
until recently. With the arrival of FreeBSD 12 it is finally available to everyone without the
burden of building a custom kernel.

When applied to jails, VNET allows each jail to have its own network stack. This solves a
couple of the shortcomings we’ve seen so far and gets us improvements like better segregation
and isolation, a “normal” local loopback interface, and the possibility to run an independent
firewall inside a jail.

VNET Jails Using sysutils/pot

This section will demonstrate how to create multiple VNET jails using sysutils/pot. Before
demonstrating how this is done, the configuration changes to pf(4) done above are reverted
(in case you didn’t run these examples and pf(4) isn’t running, please replace service pf
reload with service pf start):

root@jailhost:~ # rm -f /etc/pf.conf
root@jailhost:~ # pot init

Please, check that your PF configuration file is still valid!
root@jailhost:~ # cat /etc/pf.conf

nat-anchor pot-nat

rdr-anchor "pot-rdr/*"

root@jailhost:~ # service pf enable

root@jailhost:~ # service pf reload

pot automatically uses VNET when a jail is created with a network-type of public-bridge.
Based on the “Internal Virtual Network configuration” in /usr/local/etc/pot/pot.cfg it creates
a bridge interface and assigns an IP address that serves as the default gateway for jails to it.

root@jailhost:~ # pot vnet-start

pfctl: pf already enabled

root@jailhost:~ # ifconfig bridge0

bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\

mtu 1500
ether 02:0e:35:b7:6d4:00
inet 10.192.0.1 netmask Oxffc00000 broadcast 10.255.255.255
id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
root id 00:00:00:00:00:00 priority 32768 ifcost O port O
groups: bridge
nd6 options=1<PERFORMNUD>

On jail creation, pot automatically assigns a static IP address from the configured range. On
jail start, an epair(4) interface is created and its “a-side” is added to the bridge:

root@jailhost:~ # pot create -b 12.1 -N public-bridge -p vnetpotl

root@jailhost:~ # pot create -b 12.1 -N public-bridge -p vnetpot2

2020-01-08 (final) 10 CC BY 4.0

VNET Jails Using sysutils/pot VNET JAILS AND BHYVE VMS

root@jailhost:~ # pot start vnetpotl
root@jailhost:~ # pot start vnetpot2

root@jailhost:~ # pot list

pot name : base-12_1
network : inherit
active : false

pot name : vnetpotl
network : public-bridge
ip : 10.192.0.3
active : true

pot name : vnetpot2

network : public-bridge

ip : 10.192.0.4

active : true
root@jailhost:~ # ifconfig bridgeO

bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\

mtu 1500
ether 02:0e:35:b7:6d:00

inet 10.192.0.1 netmask O0xffc00000 broadcast 10.255.255.255

id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15

maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200

root id 00:00:00:00:00:00 priority 32768 ifcost O port O

member: epairla flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
ifmaxaddr O port 7 priority 128 path cost 2000

member: epairOa flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
ifmaxaddr O port 6 priority 128 path cost 2000

groups: bridge

nd6 options=1<PERFORMNUD>
root@jailhost:~ # ifconfig -g epair
epairQa
epairla
root@jailhost:~ # ifconfig epairOa

epairOa: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST>\

metric O mtu 1500
options=8<VLAN_MTU>
ether 02:f5:dd:bc:cd:0a
groups: epair
media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)
status: active
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

2020-01-08 (final) 11

CC BY 4.0

VNET Jails Using sysutils/pot VNET JAILS AND BHYVE VMS

root@jailhost:~ # ifconfig epairla
epairla: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST>\
metric O mtu 1500

options=8<VLAN_MTU>

ether 02:d8:52:a6:86:0a

groups: epair

media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)

status: active

nd6 options=29<PERFORMNUD, IFDISABLED,AUTO_LINKLOCAL>

The epair(4) interface’s “b-side” is used by the jail, which sets the configured static IP address
as configured in its /etc/rc.conf:

root@jailhost:~ # jexec vnetpotl grep ifconfig /etc/rc.conf
ifconfig_epairOb="inet 10.192.0.3 netmask 255.192.0.0
root@jailhost:~ # jexec vnetpotl ifconfig epairOb
epairOb: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\
mtu 1500

options=8<VLAN_MTU>

ether 02:f5:dd:bc:cd:0b

inet 10.192.0.3 netmask Oxffc00000 broadcast 10.255.255.255

groups: epair

media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)

status: active

nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
root@jailhost:~ # jexec vnetpot2 grep ifconfig /etc/rc.conf
ifconfig_epairlb="inet 10.192.0.4 netmask 255.192.0.0"
root@jailhost:~ # jexec vnetpot2 ifconfig epairlb
epairlb: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\
mtu 1500

options=8<VLAN_MTU>

ether 02:d8:52:a6:86:0b

inet 10.192.0.4 netmask Oxffc00000 broadcast 10.255.255.255

groups: epair

media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)

status: active

nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

Using the anchors configured in /etc/pf.conf, pot adds NAT rules to pf(4), which can be
inspected using pfctl(8):

root@jailhost:~ # pfctl -s nat -a pot-nat

nat on em0 inet from 10.192.0.0/10 to any -> (em0) round-robin

Like in the plain jail redirect example above, we want one of the VNET jails to run a web
server and make it available to the outside world through an inbound redirect (DNAT). Let’s
install www/nginz inside of the first jail and use pot’s “export-port” feature to create the
inbound redirect:

root@jailhost:~ # pot run vnetpotl
root@vnetpotl:~ # pkg install nginx

root@vnetpotl:~ # rm /usr/local/www/nginx
root@vnetpotl:~ # mkdir /usr/local/www/nginx

2020-01-08 (final) 12 CC BY 4.0

VNET Jails Using sysutils/iocage VNET JAILS AND BHYVE VMS

root@vnetpotl:~ # echo "Hello Jail" >/usr/local/www/nginx/index.html
root@vnetpotl:~ # service nginx enable

nginx enabled in /etc/rc.conf

root@vnetpotl:~ # service nginx start

root@vnetpotl:~ # exit

root@jailhost:~ # fetch -q -o - http://10.192.0.3

Hello Jail

root@jailhost:~ # pot export-ports -p vnetpotl -e 80:80
root@jailhost:~ # pot stop vnetpotl

root@jailhost:~ # pot start vnetpotl

+*

root@jailhost:~ # pot show
pot vnetpotl
disk usage : 55.2M
===> runtime memory usage require rctl enabled

Network port redirection
192.168.0.2 port 80 -> 10.192.0.3 port 80
pot vnetpot2
disk usage : 308K
===> runtime memory usage require rctl enabled
root@jailhost:~ #

pot creates an anchor containing redirect pass rules for exported ports in pf(4), which again
can be inspected using pfetl(8):

root@jailhost:~ # pfctl -a pot-rdr -s Anchors
pot-rdr/vnetpotl

root@jailhost:~ # pfctl -a pot-rdr/vnetpotl -s nat

rdr pass on em0 inet proto tcp \
from any to 192.168.0.2 port = http -> 10.192.0.3 port 80

Note: At this point pf(4) is only used for NATting and redirecting traffic; it does not block any
traffic.

VNET Jails Using sysutils/iocage

Compared to sysutils/pot, sysutils/iocage offers more flexibility and fine-grained control when
creating custom setups.

Managing Bridges
iocage(8) expects the user to manage the bridges VNET jails connect to, so usually this is
done manually, using ifconfig(8) and modifying /etc/rc.conf.

An alternative way to manage bridges is to use sysutils/vm-bhyve, which abstracts them as
“virtual switches”. As vm-bhyve(8) is a great tool to manage bhyve VMs, we’ll take advantage
of it to manage bridges for iocage(8) jails and later connect bhyve VMs to them.

root@jailhost:~ # pkg install vm-bhyve
vm enabled in /etc/rc.conf

2020-01-08 (final) 13 CC BY 4.0

VNET Jails Using sysutils/iocage VNET JAILS AND BHYVE VMS

root@jailhost:~ # service vm enable

vm enabled in /etc/rc.conf

root@jailhost:~ # sysrc vm_dir=zfs:zroot/vms
vm_dir: -> zfs:zroot/vms

root@jailhost:~ # zfs create zroot/vms
root@jailhost:~ # vm init

root@jailhost:~ # vm help | grep switch

”

Note: vm-bhyve(8) supports different switch types. We limit ourselves to the default “standar
for the time being.

Running rcorder /usr/local/etc/rc.d/* shows that vm is executed prior to focage on
system startup. This means that bridges will be available when jails are connected to them.

With that sorted out, we create a first switch:

root@jailhost:~ # vm switch create -a 10.1.1.1/24 services
root@jailhost:~ # vm switch list
NAME TYPE IFACE ADDRESS PRIVATE MTU VLAN PORTS
services standard vm-services 10.1.1.1/24 no - - -
root@jailhost:~ # ifconfig vm-services
vm-services: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\
mtu 1500
ether £6:b5:a8:80:78:5e
inet 10.1.1.1 netmask Oxffffff00 broadcast 10.1.1.255
id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
root id 00:00:00:00:00:00 priority 32768 ifcost O port O
groups: bridge vm-switch viid-10cd3@
nd6 options=1<PERFORMNUD>

and connect a new iocage(8) jail to it:

root@jailhost:~ # iocage create -r 12.1-RELEASE -n vnetcage \
interfaces="vnetO:vm-services" ip4_addr="vnet0|10.1.1.2/24" \
defaultrouter="10.1.1.1" vnet_default_interface="vm-services" \
vnet=on

vnetcage successfully created!

root@jailhost:~ # iocage start vnetcage

No default gateway found for ipv6.

* Starting vnetcage
+ Started OK
+ Using devfs_ruleset: 5
+ Configuring VNET OK
+ Using IP options: vnet
+ Starting services 0K
+ Executing poststart 0K

2020-01-08 (final) 14 CC BY 4.0

VNET Jails Using sysutils/iocage VNET JAILS AND BHYVE VMS

root@jailhost:~ # ifconfig -g epair
vnet0.29
root@jailhost:~ # ifconfig vnet0.29
vnet0.29: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST>\
metric O mtu 1500
description: associated with jail: vnetcage as nic: epairOb
options=8<VLAN_MTU>
ether £4:4d:30:13:1e:5c
hwaddr 02:82:25:a0:cf:0a
inet6 fe80::f64d:30ff:fel3:1ebcvnet0.29 prefixlen 64 scopeid 0x4
groups: epair
media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)
status: active
nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
root@jailhost:~ # ifconfig vm-services
vm-services: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\
mtu 1500
ether Oa:3b:ea:3e:5c:eb
inet 10.1.1.1 netmask Oxffffff00 broadcast 10.1.1.255
id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
root id 00:00:00:00:00:00 priority 32768 ifcost O port O
member: vnet0.29 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
ifmaxaddr O port 4 priority 128 path cost 2000
groups: bridge vm-switch viid-10cd3@
nd6 options=1<PERFORMNUD>
root@jailhost:~ # iocage console vnetcage
root@vnetcage:~ # fetch -q -o - http://canhazip.com
fetch: http://canhazip.com: No address record
root@vnetcage:~ # host canhazip.com
;; connection timed out; no servers could be reached
root@vnetcage:~ # logout
root@jailhost:~ #

To allow that jail to talk to the world, we’ll add minimal configuration to add outbound NAT
for it (this assumes pf(4) isn’t running already):

root@jailhost:~ # echo "set skip on lo0" >/etc/pf.conf
root@jailhost:~ # echo "nat on em0 from 10.1.1/24 -> em0:0" >>/etc/pf.conf
root@jailhost:~ # service pf enable

pf enabled in /etc/rc.conf

root@jailhost:~ # service pf start

Enabling pf.

root@jailhost:~ # iocage console vnetcage
root@vnetcage:~ # fetch -q -o - http://canhazip.com
<your public facing IP shown here>

root@vnetcage:~ # logout

root@jailhost:~ #

2020-01-08 (final) 15 CC BY 4.0

Adding bhyve VMs and DHCP to the Mix VNET JAILS AND BHYVE VMS

Adding bhyve VMs and DHCP to the Mix

In the example above, a virtual switch called “services” was created. It’s backed by the bridge
interface “vm-services” and has one VNET jail named “vnetcage” connected to it, which uses
NAT to talk to the world.

In the next step, a bhyve VM running FreeBSD is added to the same virtual switch, using a
different IP address on network 10.1.1.0/24.

Network diagram:

-),-
()
(internet)
'—()=
L).-!
/
/
________ /_____________________________
e jailhost
| emO |
\

/ \
/ \
| = fo—— . T .
| vnetcage [guest I

|
| | (iocage jail) | | (bhyve vm) |
|
|

To ease the provisioning process, we make the bhyve VM get its IP address over DHCP.
dns/dnsmasq is used for this purpose:

root@jailhost:~ # pkg install dnsmasq

cat >/usr/local/etc/dnsmasq.conf <<EOF
domain-needed

listen-address=10.1.1.1
interface=vm-services

bind-interfaces

local-service

dhcp-authoritative
dhcp-range=10.1.1.10,10.1.1.20

EQF

root@jailhost:~ # service dnsmasq enable
dnsmasq enabled in /etc/rc.conf
root@jailhost:~ # service dnsmasq start

2020-01-08 (final) 16 CC BY 4.0

Preventing Traffic Between VNET Jails/VMs VNET JAILS AND BHYVE VMS

We already installed sysutils/vm-bhyve earlier; all that’s left to do is download the install ISO,
create the VM, connect it to the switch, and run the installer:

root@jailhost:~ # vm iso https://download.freebsd.org/ftp/releases/\
IS0-IMAGES/12.1/FreeBSD-12.1-RELEASE-amd64-bootonly.iso

root@jailhost:~ # vm create guest

root@jailhost:~ # vm add -d network -s services guest

root@jailhost:~ # vm install guest \
FreeBSD-12.1-RELEASE-amd64-bootonly.iso

root@jailhost:~ # vm console guest

root@jailhost:~ # vm stop guest
root@jailhost:~ # vm start guest

This uses the bootonly ISO (network based installation), which should work ok, as the IP
address is assigned to the guest by dnsmasq(8) (which also provides DNS service) and NAT is
already configured on the host firewall.

Note: This shows two network interfaces. vinetl is the one to use in our setup. vinet0 can be
removed manually by modifying the VM’s configuration file /zroot/vms/quest/quest.conf.

As expected, dnsmasq(8) assigned an IP address from the DHCP pool to the new VM
(10.1.1.11/24 in this example). In an environment where having a stable IP is important, it’s
advantageous to assign fixed IP addresses that aren’t part of the dynamic pool based on the
virtual network interface’s MAC address in /usr/local/etc/dnsmasq.conf, e.g.,

dhcp-host=11:22:33:44:55:66,192.168.0.60

Once we added a non-privileged user and enabled sshd(8) in the new VM, we are able to
ssh(1) into it:

root@jailhost:~ # ssh user@10.1.1.11

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.1.1.11' (ECDSA) to the list of known hosts.
Password for userQguest:

$ fetch -q -o - http://canhazip.com

<your public facing IP shown here>

$ “DConnection to 10.1.1.11 closed.

root@jailhost:~ #

Note: By exposing /dev/bpf to a VNET jail, it’s possible to configure the jail’s IP address
using DHCP just like it’s done for VMs here. Using iocage(8) this is easily accomplished by
enabling the dhcp property.

Preventing Traffic Between VNET Jails/VMs

A simple way to prevent traffic between jails and VMs is to set the private flag on bridge
members (ifconfig <bridgename> private <interfacename>). Any interface marked as
private won’t be able to talk to any other interface that is also marked as such.

sysutils/vm-bhyve sets the private flag automatically on vm start if the switch was configured
to be private beforehand by running vm switch private <switchname> on.

2020-01-08 (final) 17 CC BY 4.0

Preventing Traffic Between VNET Jails/VMs VNET JAILS AND BHYVE VMS

Unfortunately, this is only true for VMs, so if you connect iocage jails to the switch, you’ll
have to set the private flag for them manually on every jail start.

In the current setup, “vnetcage” can ssh into “guest”:

root@jailhost:~ # iocage console -f vnetcage
root@vnetcage:~ # nc 10.1.1.11 22
SSH-2.0-0penSSH_7.8 FreeBSD-20180909

~C

root@vnetcage:~ # logout

root@jailhost:~ #

After changing the switch to private mode, the VM’s tap interface connected to the bridge is
marked as PRIVATE. As the jail’s epair interface is not tagged as PRIVATE, traffic can still
flow and ssh still works:

root@jailhost:~ # vm stop guest
Sending ACPI shutdown to guest
root@jailhost:~ # vm switch private services on
root@jailhost:~ # vm switch list
NAME TYPE IFACE ADDRESS PRIVATE MTU VLAN PORTS
services standard vm-services 10.1.1.1/24 yes - - -
root@jailhost:~ # vm start guest
Starting guest
* found guest in /zroot/vms/guest
* booting...
root@jailhost:~ # ifconfig vm-services
vm-services: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric O\
mtu 1500
ether Oa:3b:ea:3e:5c:eb
inet 10.1.1.1 netmask Oxffffff00 broadcast 10.1.1.255
id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
root id 00:00:00:00:00:00 priority 32768 ifcost O port O
member: tapl flags=943<LEARNING,DISCOVER,PRIVATE, AUTOEDGE,AUTOPTP>
ifmaxaddr O port 6 priority 128 path cost 2000000
member: vnet0.31 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
ifmaxaddr O port 7 priority 128 path cost 2000
groups: bridge vm-switch viid-10cd30@
nd6 options=1<PERFORMNUD>
root@jailhost:~ # iocage console -f vnetcage
root@vnetcage:~ # nc 10.1.1.11 22
SSH-2.0-0OpenSSH_7.8 FreeBSD-20180909
~C
root@vnetcage:~ # logout
root@jailhost:~ #

Let’s change the jail’s connection manually to “private” and perceive that connection attempts
to the jail time out, while NAT to the outside world is still intact and the jailhost can still
connect to the VM via ssh(1):

root@jailhost:~ # ifconfig vm-services private vnet0.31
root@jailhost:~ # iocage console -f vnetcage

2020-01-08 (final) 18 CC BY 4.0

Preventing Traffic Between VNET Jails/VMs VNET JAILS AND BHYVE VMS

root@vnetcage:~ # nc -vw 10 10.1.1.11 22

nc: connect to 10.1.1.11 port 22 (tcp) failed: Operation timed out
root@vnetcage:~ # fetch -q -o - http://canhazip.com

<your public facing IP shown here>

root@vnetcage:~ # logout

root@jailhost:~ # nc 10.1.1.11 22

SSH-2.0-0penSSH_7.8 FreeBSD-20180909

~C

root@jailhost:~ #

Ideally, iocage(8) would support a configuration option to allow setting the private flag on the
bridge member automatically. Until such a feature becomes available, the script below can be
configured to be executed by the jail’s poststart hook to accomplish (almost) the same.

Jusr/local/sbin/set_ioc_vnet_private.sh:

#!/bin/sh
set -e

if ["$#" -ne 1 -a "$#" -ne 2]; then
echo "Usage: $0 jailname [vnetprefix]" >&2
exit 1

fi

JAILNAME=$1
VNETPREFIX=${2:-vnetO}

JAILINFO=$(jls -j ioc-$JATILNAME)
JID=$(echo "$JAILINFO" | grep $JAILNAME | awk '{ print $1 }')

for BRIDGE in $(ifconfig -g bridge); do
CONFIG=$(ifconfig $BRIDGE)
set +e
echo "$CONFIG" | grep "member: ${VNETPREFIX}\."$JID >/dev/null
NOTFOUND=$7
set -e
if [$NOTFOUND -eq O]; then
ifconfig $BRIDGE private $VNETPREFIX.$JID
exit O
fi
done

echo "Couldn't find interface $VNETPREFIX.$JID on any bridges" >&2
exit 1

The script takes the jail’s name as a mandatory parameter and optionally the vnet interface
(in iocage’s internal enumeration). The latter defaults to “vnet0”.

Now, let’s restart the “vnetcage” jail, check the bridge member configuration, then alter its
configuration to make use of the new script, restart again, and compare the resulting bridge
configuration:

2020-01-08 (final) 19 CC BY 4.0

Firewalling Inside VNET Jails/VMs VNET JAILS AND BHYVE VMS

root@jailhost:~ # iocage restart vnetcage

root@jailhost:~ # ifconfig vm-services | grep vnet
member: vnet0.15 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>

root@jailhost:~ # ifconfig vm-services | grep vnet

root@jailhost:~ # iocage set \
exec_poststart="/usr/local/sbin/set_ioc_vnet_private.sh vnetcage" \
vnetcage

exec_poststart: /usr/bin/true -> /usr/local/sbin/set_ioc_vnet_private.sh \
vnetcage

root@jailhost:~ # iocage restart vnetcage

root@jailhost:~ # ifconfig vm-services | grep vnet

member: vnet0.16 flags=943<LEARNING,DISCOVER,PRIVATE,AUTOEDGE,\
AUTOPTP>
root@jailhost:~ #

As you can see, the bridge member is now correctly configured to be private on jail start.

Note: This solution isn’t perfect, as traffic is possible in the short period of time between
starting the jail and running the exec_ poststart command.

Firewalling Inside VNET Jails/VMs

Firewalling inside bhyve VMs is straight-forward - simply run the host firewall of the OS
running inside the VM.

Running a firewall inside a jail is a bit more complicated. ipfw(8) is the recommended option,
but pf(4) should work at this point as well. For the sake of not introducing even more syntax
in this article, we’ll describe the latter here, even though iocage’s documentation recommends
otherwise.

To run pf(4) inside a VNET jail, the pf(4) kernel module has to be loaded and various devices
need to be exposed. This is done by adding a new ruleset set to /etc/devfs.rules:

[vnet_jail_pf=501]

add include $devfsrules_hide_all

add include $devfsrules_unhide_basic
add include $devfsrules_unhide_login
add include $devfsrules_jail

add path pf unhide

add path pflog unhide

and applying it to the jail:
root@jailhost:~ # service devfs restart

root@jailhost:~ # iocage stop vnetcage

root@jailhost:~ # iocage set devfs_ruleset=501 vnetcage
devfs_ruleset: 4 -> 501
root@jailhost:~ # iocage console -f vnetcage

root@vnetcage:~ # 1ls /dev/pf
/dev/pf

2020-01-08 (final) 20 CC BY 4.0

Firewalling Inside VNET Jails/VMs VNET JAILS AND BHYVE VMS

root@vnetcage:~ # logout
root@jailhost:~ #

Note: Due to a bug in iocage(8), the configured devfs(8) ruleset is removed from devfs(8) every
time the jail is stopped. This will probably get fized in a future release; in the meantime there’s
a patch available® that addresses the issue.

Test using a minimal firewall configuration - check if blocking a specific IP address works and
if state is created like expected:

root@jailhost:~ # iocage console -f vnetcage
root@vnetcage:~ # echo "set skip on lo0" >/etc/pf.conf
root@vnetcage:~ # echo "block quick to 1.1.1.1" >>/etc/pf.conf
root@vnetcage:~ # echo "pass" >>/etc/pf.conf
root@vnetcage:~ # service pf enable

pf enabled in /etc/rc.conf

root@vnetcage:~ # service pf start

Enabling pf.

root@vnetcage:~ # service pf start

root@vnetcage:~ # ping -cl 8.8.8.8

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: icmp_seq=0 ttl=56 time=16.475 ms

--- 8.8.8.8 ping statistics --—-

1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 16.475/16.475/16.475/0.000 ms
root@vnetcage:~ # pfctl -s state

all icmp 10.1.1.2:39231 -> 8.8.8.8:39231 0:0
root@vnetcage:~ # ping -c1 1.1.1.1

PING 1.1.1.1 (1.1.1.1): 56 data bytes

ping: sendto: Permission denied

--- 1.1.1.1 ping statistics -—-
1 packets transmitted, O packets received, 100.0% packet loss
root@vnetcage:~ # fetch -q -o - http://canhazip.com

93.104.68.83

root@vnetcage:~ # pfctl -s state

all icmp 10.1.1.2:39231 -> 8.8.8.8:39231 0:0

all udp 10.1.1.2:32682 -> 8.8.8.8:53 MULTIPLE:SINGLE

all tcp 10.1.1.2:58192 -> 104.16.223.38:80 FIN_WAIT_2:FIN_WAIT_2

root@vnetcage:~ # logout
root@jailhost:~ #

Note: Jails/VMs on the same bridge can set/steal IPs and change MAC addresses, so this
level of protection is only sufficient to prevent unwanted/accidental traffic from happening.
For tighter security, it’s possible to enable Layer 2 filtering using ipfw(8) on the jailhost and
insert an additional bridge between the host bridge and the jail’s epair interface. The details
of such a setup are beyond the scope of this article.

3https://github.com/iocage/iocage/pull /1106

2020-01-08 (final) 21 CC BY 4.0

https://github.com/iocage/iocage/pull/1106

VXLAN

VXLAN

Jails and VMs are virtualization technologies that add a lot of flexibility and agility to the
provisioning of resources.

VXLAN (Virtual eXtensible LAN interface) is a tunneling protocol that aims to decouple
the virtual network from the underlying physical network and thereby ease automation and
orchestration. It does so by encapsulating Layer 2 Ethernet frames into Layer 3 IP/UDP
packets. One can think of VXLAN as VLAN for multitenant data centers. And just like
VLAN uses a unique VLAN tag, VXLAN uses a VXLAN Network Identifier (VNI), a 24-bit
value in the VXLAN header, to distinguish network segments.

VXLAN Example Overview

The example setup consists of three hosts on the same LAN, one gateway host (LAN
IP 192.168.0.1) and two jailhosts (“jailhost-a” and “jailhost-b”) with LAN IP addresses
192.168.0.10 and 192.168.0.20. The jailhosts are hosting VNET jails and VMs; host “jailhost-b”
also hosts a plain jail.

The three hosts are connected over two VXLANs (VXLAN ids 111 and 222); the gateway
host provides access to the internet over a dedicated uplink using NAT. Jails and VMs get IP
addresses on both VXLANSs (networks 10.0.111.0/24 and 10.0.222.0/24).

In this example, many configurations will be applied by rebooting the machines involved. Even
though this is mostly done for the sake of brevity, it also reboot tests the setup as a side-effect
- something that needs to be done anyway. Everything described can also be accomplished
without rebooting though.

Network diagram:

2020-01-08 (final) 22 CC BY 4.0

VXLAN Example Overview VXLAN

1 e e e e e —— I _____________ 1
|
e >, === ' K e e e !
............................ >] IP Switch I<.... i,
/ .o \

ST /. . L\ .

| . jailhost-a / | N \ jailhost-b .
| . / | N \ o
e ' | . B ittty o
| . | igh0 | | . | em0 | o
| . S S . [S S . o

| *...| vxlan111| vxlan222 |........ .. | vxlani111| vxlan222 |....'
R B Bt '		fmmm - B S '
/ \		/ \
/ \		' \
. ————- Ve . - R		- b, - R N
	switch222	
' ittty "	B it ittt "	
= i . fmm—m	I P R P o	
	vnetjail-a	
e ' L '		
	N B it .	
o '	'>	plainjail-b
'		

The example uses multicast mode. VXLAN can also be configured in unicast mode (see
vzlan(4) for details).

2020-01-08 (final) 23 CC BY 4.0

Gateway Configuration VXLAN

Gateway Configuration

The gateway host uses a simple ipfw(8)/natd(8) configuration and two vzlan(4) interfaces. It
is assumed that the uplink is already configured:

Firewall, NAT and IP forwarding:

rootQgateway:~ # service ipfw enable

ipfw enabled in /etc/rc.conf
root@gateway:~ # sysrc firewall_type=open
firewall_type: UNKNOWN -> open
root@gateway:~ # service natd enable

natd enabled in /etc/rc.conf
root@gateway:~ # sysrc natd_interface=emO
natd_interface: -> em0

rootQgateway:~ # sysrc gateway_enable=YES
gateway_enable: NO -> YES

VXLAN interfaces:

root@gateway:~ # sysrc cloned_interfaces+="vxlanlll vxlan222"
cloned_interfaces: -> vxlanlll vxlan222
root@gateway:~ # sysrc ifconfig vxlanlll="inet 10.0.111.1/24 mtu 1450"
ifconfig_vxlanill: -> inet 10.0.111.1/24 mtu 1450
root@gateway:~ # sysrc create_args_vxlanlll="vxlanid 111 vxlanlocal\
192.168.0.1 vxlandev eml vxlangroup 239.0.0.111"
create_args_vxlanlll: -> vxlanid 111 vxlanlocal 192.168.0.1
vxlandev eml vxlangroup 239.0.0.111
root@gateway:~ # sysrc ifconfig vxlan222="inet 10.0.222.1/24 mtu 1450"
ifconfig_vxlan222: -> inet 10.0.222.1/24 mtu 1450
root@gateway:~ # sysrc create_args_vxlan222="vxlanid 222 vxlanlocal\
192.168.0.1 vxlandev eml vxlangroup 239.0.0.222"
create_args_vxlan222: -> vxlanid 222 vxlanlocal 192.168.0.1
vxlandev eml vxlangroup 239.0.0.222

Static routes to VXLAN multicast addresses:

root@gateway:~ # sysrc static_routes+="vxlanlll vxlan222"
static_routes: -> vxlanlll vxlan222

root@gateway:~ # sysrc route_vxlanl111="239.0.0.111/32 -interface eml"
route_vxlanlll: -> 239.0.0.111/32 -interface eml

root@gateway:~ # sysrc route_vxlan222="239.0.0.222/32 -interface eml"
route_vxlan222: -> 239.0.0.222/32 -interface eml

root@gateway:~ # reboot

2020-01-08 (final) 24 CC BY 4.0

Jailhost-a VXLAN

Jailhost-a

“jailhost-a” hosts one VM and one VNET jail, connected over switches (bridge interfaces) to the
VXLAN interfaces, which in turn use the physical interface igh0Q to transmit the encapsulated
traffic over the LAN.

Network Configuration (jailhost-a)

Create VXLAN interfaces:

root@jailhost-a:~ # sysrc cloned_interfaces+="vxlanlll vxlan222"
cloned_interfaces: -> vxlanlll vxlan222
root@jailhost-a:~ # sysrc ifconfig_vxlanlil="inet 10.0.111.10/24 mtu 1450"
ifconfig_vxlani1l: -> inet 10.0.111.10/24 mtu 1450
root@jailhost-a:~ # sysrc create_args_vxlanlll="vxlanid 111 vxlanlocal\
192.168.0.10 vxlandev igbO vxlangroup 239.0.0.111"
create_args_vxlanlll: -> vxlanid 111 vxlanlocal 192.168.0.10

vxlandev igbO vxlangroup 239.0.0.111
root@jailhost-a:~ # sysrc ifconfig_vxlan222="inet 10.0.222.10/24 mtu 1450"
ifconfig_vxlan222: -> inet 10.0.222.10/24 mtu 1450
root@jailhost-a:~ # sysrc create_args_vxlan222="vxlanid 222 vxlanlocal\
192.168.0.10 vxlandev igbO vxlangroup 239.0.0.222"
create_args_vxlan222: -> vxlanid 222 vxlanlocal 192.168.0.10

vxlandev igbO vxlangroup 239.0.0.222

Set static routes for multicast traffic (technically not needed if the default route goes through
the same interface):

root@jailhost-a:~ # sysrc static_routes+="vxlanlll vxlan222"
static_routes: -> vxlanlll vxlan222

root@jailhost-a:~ # sysrc route_vxlan111="239.0.0.111/32 -interface igbO"
route_vxlanill: -> 239.0.0.111/32 -interface ighO0

root@jailhost-a:~ # sysrc route_vxlan222="239.0.0.222/32 -interface ighO"
route_vxlan222: -> 239.0.0.222/32 -interface igb0

root@jailhost-a:~ # reboot

Create switches (bridge interfaces) to connect jails/VMs to and add the respective VXLAN
interfaces to them:

root@jailhost-a:~ # sysrc cloned_interfaces+="bridge0 bridgel"
cloned_interfaces: vxlanlll vxlan222 -> vxlanlll vxlan222 bridgeO bridgel
root@jailhost-a:~ # sysrc ifconfig bridgeO_name="switch111"
ifconfig_bridge0_name: -> switchlll
root@jailhost-a:~ # sysrc \

ifconfig_switchllil="inet 10.0.111.12/32 addm vxlani11"
ifconfig_switchlll: -> inet 10.0.111.12/32 addm vxlaniii
root@jailhost-a:~ # sysrc ifconfig_bridgel_name="switch222"
ifconfig_bridgel_name: -> switch222
root@jailhost-a:~ # sysrc \

ifconfig_switch222="inet 10.0.222.12/32 addm vxlan222"
ifconfig_switch222: -> inet 10.0.222.12/32 addm vxlan222
root@jailhost-a:~ # reboot

2020-01-08 (final) 25 CC BY 4.0

Jailhost-a VXLAN

VM Configuration (jailhost-a)

Install sysutils/vm-bhyve and create a switch of type “manual” (not managed by vm-bhyve)
that refers to the bridge interface (switchl111) created above:

root@jailhost-a:~ # pkg install vm-bhyve

root@jailhost-a:~ # service vm enable

vm enabled in /etc/rc.conf

root@jailhost-a:~ # sysrc vm_dir=zfs:zroot/vms

vm_dir: -> zfs:zroot/vms

root@jailhost-a:~ # zfs create zroot/vms

root@jailhost-a:~ # vm init

root@jailhost-a:~ # vm switch create -t manual -b switchlll switchlill
root@jailhost-a:~ # vm switch list

NAME TYPE IFACE ADDRESS PRIVATE MTU VLAN PORTS
switchlll manual switchlll n/a no n/a n/a n/a

Download FreeBSD ISO and install a VM called “guest-a”; start new VM on boot:

root@jailhost-a:~ # vm iso https://download.freebsd.org/ftp/releases/\
ISO-IMAGES/12.1/FreeBSD-12.1-RELEASE-amd64-bootonly.iso
root@jailhost-a:~ # vm create guest-a
root@jailhost-a:~ # vm add -d network -s switchlll guest-a
root@jailhost-a:~ # vm install \
guest-a FreeBSD-12.1-RELEASE-amd64-bootonly.iso

root@jailhost-a:~ # vm console guest-a

(set IP of vtnetl to 10.0.111.13/24, set default gw to 10.0.111.1)
root@jailhost-a:~ # sysrc vm_list+="guest-a"
root@jailhost-a:~ # vm stop guest-a

Start the VM and test connectivity (note how public traffic is sent over VXLAN 111 and
NATted at the gateway host, as the gateway host is configured to be the default gateway):

root@jailhost-a:~ # vm start guest-a

root@jailhost-a:~ # vm console guest-a

root@guest-a:~ # ping -c 3 10.0.111.1

PING 10.0.111.1 (10.0.111.1): 56 data bytes

64 bytes from 10.0.111.1: icmp_seq=0 ttl=64 time=1.545 ms
64 bytes from 10.0.111.1: icmp_seq=1 ttl=64 time=0.793 ms
64 bytes from 10.0.111.1: icmp_seq=2 ttl=64 time=0.790 ms

--- 10.0.111.1 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.790/1.043/1.545/0.355 ms
root@guest-a:~ # traceroute www.freebsd.org

1 10.0.111.1 (10.0.111.1) 1.251 ms 1.421 ms 1.070 ms

root@guest-a:~ # logout
$ D

2020-01-08 (final) 26 CC BY 4.0

Jailhost-b VXLAN

Jail Configuration (jailhost-a)

Install sysutils/iocage:

root@jailhost-a:~ # pkg install py36-iocage
root@jailhost-a:~ # iocage activate zroot

ZFS pool 'zroot' successfully activated.
root@jailhost-a:~ # mount -t fdescfs null /dev/fd
root@jailhost-a:~ # service iocage enable

iocage enabled in /etc/rc.conf

Note: You might want to mount fdescfs(5) permanently by altering /etc/fstab.

Create jail named “vnetjail-a” on VXLAN 222 (configured to be started at boot time, so it
will start immediately after creation):

root@jailhost-a:~ # iocage create -n vnetjail-a -r 12.1-RELEASE \
interfaces="vnetO:switch222" ip4_addr="vnet0|10.0.222.13/24" \
boot=1 vnet_default_interface="switch222" defaultrouter="10.0.222.1" \
vnet=on

vnetjail-a successfully created!

Enter the jail and test connectivity:

root@jailhost-a:~ # iocage console vnetjail-a

root@vnetjail-a:~ # traceroute -n 141.1.1.1

traceroute to 141.1.1.1 (141.1.1.1), 64 hops max, 40 byte packets
1 10.0.111.1 (10.0.111.1) 1.353 ms 0.687 ms 1.045 ms

2 many more interesting hosts...

root@vnetjail-a:~ # fetch -q -o - http://canhazip.com
(your public IP here)
root@vnetjail-a:~ # logout

Finally, test if everything comes up correctly on reboot:

root@jailhost-a:~ # reboot

Jailhost-b

The setup of “jailhost-b” is similar to that of “jailhost-a”, but with networks reversed (VM
on VXLAN 222, jails on VXLAN 111). In addition, it hosts a plain jail that uses an alias
address directly on the VXLAN interface (vxlan111), which doesn’t use that network as its
default gateway. In a production setup, this jail could be used to contain a supporting service
provided by the underlying jailhost.

Network Configuration (jailhost-b)

Create VXLAN interfaces:

root@jailhost-b:~ # sysrc cloned_interfaces+="vxlanlll vxlan222"
cloned_interfaces: -> vxlanlll vxlan222
root@jailhost-b:~ # sysrc ifconfig_vxlanlil="inet 10.0.111.20/24 mtu 1450"

2020-01-08 (final) 27 CC BY 4.0

Jailhost-b VXLAN

ifconfig_vxlanlll: -> inet 10.0.111.20/24 mtu 1450
root@jailhost-b:~ # sysrc create_args_vxlanlll="vxlanid 111 vxlanlocal\
192.168.0.20 vxlandev em0 vxlangroup 239.0.0.111"
create_args_vxlanlll: -> vxlanid 111 vxlanlocal 192.168.0.20
vxlandev emO vxlangroup 239.0.0.111
root@jailhost-b:~ # sysrc ifconfig_vxlan222="inet 10.0.222.20/24 mtu 1450"
ifconfig_vxlan222: -> inet 10.0.222.20/24 mtu 1450
root@jailhost-b:~ # sysrc create_args_vxlan222="vxlanid 222 vxlanlocal\
192.168.0.20 vxlandev em0 vxlangroup 239.0.0.222"
create_args_vxlan222: -> vxlanid 222 vxlanlocal 192.168.0.20
vxlandev emO vxlangroup 239.0.0.222

Set static routes for multicast traffic (technically not needed if the default route goes through
the same interface):

root@jailhost-b:~ # sysrc static_routes+="vxlanlll vxlan222"
static_routes: -> vxlanlll vxlan222

root@jailhost-b:~ # sysrc route_vxlanl111="239.0.0.111/32 -interface em0O"
route_vxlanlll: -> 239.0.0.111/32 -interface em0

root@jailhost-b:~ # sysrc route_vxlan222="239.0.0.222/32 -interface em0"
route_vxlan222: -> 239.0.0.222/32 -interface em0

root@jailhost-b:~ # reboot

Plain Jail Configuration (jailhost-b)

Install sysutils/iocage:

root@jailhost-b:~ # pkg install py36-iocage

root@jailhost-b:~ # iocage activate zroot

ZFS pool 'zroot' successfully activated.
root@jailhost-b:~ # mount -t fdescfs null /dev/fd
root@jailhost-b:~ # service iocage enable

iocage enabled in /etc/rc.conf

Note: You might want to mount fdescfs(5) permanently by altering /etc/fstab.

Create a plain (non-VNET) jail on the alias address 10.0.111.21. It’s configured to run at
boot time, so it starts immediately after creation:

root@jailhost-b:~ # iocage create -n plainjail-b \
-r 12.1-RELEASE ip4_addr="vxlan111/10.0.111.21/32" \
allow_raw_sockets=1 boot=1

plainjail-b successfully created!

2020-01-08 (final) 28 CC BY 4.0

Jailhost-b VXLAN

Run jail and test connectivity:

root@jailhost-b:~ # iocage console -f plainjail-b

root@plainjail-b:~ # ping -c 3 10.0.111.1

PING 10.0.111.1 (10.0.111.1): 56 data bytes

64 bytes from 10.0.111.1: icmp_seq=0 ttl=64 time=0.811 ms
64 bytes from 10.0.111.1: icmp_seq=1 ttl=64 time=0.816 ms
64 bytes from 10.0.111.1: icmp_seq=2 ttl1=64 time=0.810 ms

---10.0.111.1 ping statistics ---

3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.810/0.812/0.816/0.003 ms
root@plainjail-b:~ # ping -c 3 10.0.111.10

PING 10.0.111.10 (10.0.111.10): 56 data bytes

64 bytes from 10.0.111.10: icmp_seq=0 ttl=64 time=0.716 ms
64 bytes from 10.0.111.10: icmp_seq=1 ttl=64 time=0.297 ms
64 bytes from 10.0.111.10: icmp_seq=2 ttl=64 time=0.319 ms

--- 10.0.111.10 ping statistics ---

3 packets transmitted, 3 packets received, 0.07% packet loss
round-trip min/avg/max/stddev = 0.297/0.444/0.716/0.193 ms
root@plainjail-b:~ # logout

root@jailhost-b:~ #

Note: The way “plainjail-b” is configured, its public traffic won’t get sent over VXLAN and
NATted by the gateway host. That’s intentional in this setup; otherwise a VNET jail would ve
been used.

Network Switch Setup (jailhost-b)

Create switched (bridge interfaces) to connect jails/VMs to and add the respective VXLAN
interfaces to them:

root@jailhost-b:~ # sysrc cloned_interfaces+="bridge0 bridgel"
cloned_interfaces: vxlanlll vxlan222 -> vxlanlll vxlan222 bridgeO bridgel
root@jailhost-b:~ # sysrc ifconfig_bridgeO_name="switchl11l"
ifconfig _bridgeO_name: -> switchlll
root@jailhost-b:~ # sysrc \

ifconfig_switchlll="inet 10.0.111.22/32 addm vxlanll1"
ifconfig_switchl1l: -> inet 10.0.111.22/32 addm vxlanlili
root@jailhost-b:~ # sysrc ifconfig_bridgel_name="switch222"
ifconfig_bridgel_name: -> switch222
root@jailhost-b:~ # sysrc \

ifconfig_switch222="inet 10.0.222.22/32 addm vxlan222"
ifconfig_switch222: -> inet 10.0.222.22/32 addm vxlan222
root@jailhost-b:~ # reboot

2020-01-08 (final) 29 CC BY 4.0

Jailhost-b VXLAN

VNET Jail Configuration (jailhost-b)

Create jail named “vnetjail-b” on VXLAN 111 (configured to be started at boot time, so it’ll
start immediately after creation):

root@jailhost-b:~ # iocage create -n vnetjail-b -r 12.1-RELEASE \
interfaces="vnetO:switch111" ip4_addr="vnet0|10.0.111.23/24" \
boot=1 vnet_default_interface="switchl111" defaultrouter="10.0.111.1" \
vnet=on

vnetjail-b successfully created!

Enter the jail and test connectivity:

root@jailhost-b:~ # iocage console vnetjail-b

root@vnetjail-b:~ # traceroute -n 141.1.1.1

traceroute to 141.1.1.1 (141.1.1.1), 64 hops max, 40 byte packets
1 10.0.111.1 (10.0.111.1) 1.353 ms 0.687 ms 1.045 ms

2 many more interesting hosts...

root@vnetjail-b:~ # logout

VM Configuration (jailhost-b)

Install sysutils/vm-bhyve and create a switch of type “manual” (not managed by vm-bhyve)
that refers to the bridge interface (switch111) created above:

root@jailhost-b:~ # pkg install vm-bhyve

root@jailhost-b:~ # service vm enable

vm enabled in /etc/rc.conf

root@jailhost-b:~ # sysrc vm_dir=zfs:zroot/vms

vm_dir: -> zfs:zroot/vms

root@jailhost-b:~ # zfs create zroot/vms

root@jailhost-b:~ # vm init

root@jailhost-b:~ # vm switch create -t manual -b switch222 switch222
root@jailhost-b:~ # vm switch list

NAME TYPE IFACE ADDRESS PRIVATE MTU VLAN PORTS
switch222 manual switch222 n/a no n/a n/a n/a

Download FreeBSD ISO and install a VM called “guest-b”; start new VM on boot:

root@jailhost-b:~ # vm iso https://download.freebsd.org/ftp/releases/\
IS0-IMAGES/12.1/FreeBSD-12.1-RELEASE-amd64-bootonly.iso
root@jailhost-b:~ # vm create guest-b
root@jailhost-b:~ # vm add -d network -s switch222 guest-b
root@jailhost-b:~ # vm install \
guest-b FreeBSD-12.1-RELEASE-amd64-bootonly.iso

root@jailhost-b:~ # vm console guest-b

(set IP of vtnetl to 10.0.222.23/24, set default gw to 10.0.222.1)
root@jailhost-b:~ # sysrc vm_list+="guest-b"
root@jailhost-b:~ # vm stop guest-b

Start the VM and test connectivity (note how public traffic is sent over VXLAN 222 and
NATted at the gateway host, as the gateway host is configured to be the default gateway):

2020-01-08 (final) 30 CC BY 4.0

VXLAN Multicast Troubleshooting VXLAN

root@jailhost-b:~ # vm start guest-b
root@jailhost-b:~ # vm console guest-b
root@guest-b:~ # traceroute www.freebsd.org
1 10.0.111.1 (10.0.111.1) 1.251 ms 1.421 ms 1.070 ms

root@guest-b:~ # logout
$ °D
Finally, test if everything comes up correctly on reboot:

root@jailhost-b:~ # reboot

VXLAN Multicast Troubleshooting

There are various tools that can help to troubleshoot your VXLAN setup.
Use ifconfig(8) to make sure the interface is actually configured correctly:

root@jailhost-b:~ # ifconfig vxlanlil
vxlanlll: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST>
metric O mtu 1450
options=80000<LINKSTATE>
ether 58:9c:fc:10:ff:fe
inet 10.0.111.20 netmask Oxffffff00 broadcast 10.0.111.255
inet 10.0.111.21 netmask Oxffffffff broadcast 10.0.111.21
groups: vxlan
vxlan vni 111 local 192.168.0.20:4789 group 239.0.0.111:4789
media: Ethernet autoselect (autoselect <full-duplex>)
status: active
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

Note: The MTU is set to 1450 (as VXLAN uses 50 bytes of header information). If supported
by all components, it’s recommended to configure jumbo frames on your network.

Use sockstat(1) to make sure that the host is actually listening on the standard VXLAN port
4789:

root@jailhost-b:~ # sockstat -14 | grep 4789
? ? ? ? udp4 *:4789 * 1k

Use ifmcestat(8) to verify that the multicast configuration looks reasonable:

root@jailhost-b:~ # ifmcstat -i emO
emO:
inet 192.168.0.20
igmpv3 rv 2 qi 125 qri 100 uri 3
group 239.0.0.222 mode exclude
mcast-macaddr 01:00:5e:00:00:de
group 239.0.0.111 mode exclude
mcast-macaddr 01:00:5e:00:00:6f
group 224.0.0.1 mode exclude
mcast-macaddr 01:00:5e:00:00:01

2020-01-08 (final) 31 CC BY 4.0

VXLAN Multicast Troubleshooting VXLAN

Use tepdump(1) to inspect VXLAN traffic:

root@jailhost-b:~ # tcpdump -vni emO -f "udp && port 4789"
tcpdump: listening on em0O, link-type EN10OMB (Ethernet), capture size\
262144 bytes
14:24:13.288186 IP (tos 0x0, ttl 64, id 9404, offset 0, flags [nomne],\
proto UDP (17), length 78)

192.168.0.20.17657 > 239.0.0.111.4789: VXLAN, flags [I] (0x08), vni 111
ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 10.0.111.1 tell\
10.0.111.20, length 28

Check the ARP table using arp(8) (also within VMs):

root@jailhost-b:~ # arp -an

(10.0.222.22) at 02:0e:35:b7:6d:01 on switch222 permanent [bridge]
(10.0.111.22) at 02:0e:35:b7:64:00 on switchlll permanent [bridge]
(10.0.222.20) at 58:9c:fc:10:£f:81 on vxlan222 permanent [ethernet]
(10.0.111.21) at 58:9c:fc:10:ff:fe on vxlanlll permanent [ethernet]
(10.0.111.20) at 58:9c:fc:10:ff:fe on vxlanlll permanent [ethernet]
(10.0.111.12) at 02:£7:16:28:83:00 on vxlanlil expires in 1160 seconds\
[ethernet]

0
0
0
0

NN N N N N

Check VXLAN forwarding tables using sysct{(8):

root@jailhost-b:~ # sysctl net.link.vxlan.111.ftable.dump
net.link.vxlan.111.ftable.dump:

D 0x01 02:F7:16:28:83:00 192.168.0.10 00002343

D 0x01 58:9C:FC:10:FF:E9 192.168.0.10 00002378

D 0x01 00:BD:0B:07:F7:01 192.168.0.10 00002299

D 0x01 58:9C:FC:03:25:35 192.168.0.10 00002347

root@jailhost-b:~ # sysctl net.link.vxlan.222.ftable.dump

Flush ARP and VXLAN forwarding tables:

root@jailhost-b:~ # arp -ad

10.0.111.12 (10.0.111.12) deleted

10.0.111.10 (10.0.111.10) deleted

192.168.0.10 (192.168.0.10) deleted
root@jailhost-b:~ # ifconfig vxlanlll vxlanflush
root@jailhost-b:~ # ifconfig vxlan222 vxlanflush

If the environment permits, temporarily disable host firewalls while troubleshooting to make
sure they’re not interfering with traffic.

2020-01-08 (final) 32 CC BY 4.0

CONCLUSION AND FURTHER READING

Conclusion and Further Reading

The intent of this article was to show various ways to configure the network of FreeBSD’s virtu-
alization features based on examples. The choice to use third party tools from ports/packages
was made consciously, as many users will try these tools in practice to get started. Even if
specific tools won’t make it to a production setup, using them while prototyping makes it
easier to experiment and perceive what’s configured before building a leaner solution.

The examples shown are by no means exhaustive, but they should help the reader to get started
and figure out which kind of setup might meet their specific requirements. It’s recommended
to do some further reading to fully understand the available options and their implications.

Please see below for some good sources of information on the topics covered in this article:

Michael W. Lucas - FreeBSD Mastery: Jails*

John Nielsen - Using VXLAN to network virtual machines, jails, and other fun things
on FreeBSD?, Slides®, Video”

iocage: A FreeBSD Jail Manager®

vm-bhyve: Shell based, minimal dependency bhyve manager’

pot: another container framework for FreeBSD, based on jails, ZFS and pf'°

FreeBSD as a Host with bhyve'!, covers setting up bhyve by directly using LAN
addresses.

FreeBSD ifconfig(8) man page'?

FreeBSD bridge(4) man page'”

FreeBSD wvrlan(4) man page'*

4https://mwl.io/nonfiction/os#fmjail)

Shttps://www.bsdcan.org/2016/schedule/events/715.en.html

Shttps://www.bsdcan.org/2016/schedule/attachments/341__VXLAN_ BSDCan2016.pdf

Thttps://www.youtube.com/watch?v=_1Ne_ TgF3MQ

8https://iocage.readthedocs.io

9https://github.com/churchers/vm-bhyve
Ohttps://github.com/pizzamig/pot
https://www.freebsd.org/doc/handbook/virtualization- host-bhyve.html
2https://www.freebsd.org/cgi/man.cgi?query=ifconfig&sektion=8
Bhttps://www.freebsd.org/cgi/man.cgi?query=bridge&sektion=4
Mhttps://www.freebsd.org/cgi/man.cgi?query=vxlan&sektion=4

2020-01-08 (final) 33 CC BY 4.0

https://mwl.io/nonfiction/os#fmjail)
https://www.bsdcan.org/2016/schedule/events/715.en.html
https://www.bsdcan.org/2016/schedule/attachments/341_VXLAN_BSDCan2016.pdf
https://www.youtube.com/watch?v=_1Ne_TgF3MQ
https://iocage.readthedocs.io
https://github.com/churchers/vm-bhyve
https://github.com/pizzamig/pot
https://www.freebsd.org/doc/handbook/virtualization-host-bhyve.html
https://www.freebsd.org/cgi/man.cgi?query=ifconfig&sektion=8
https://www.freebsd.org/cgi/man.cgi?query=bridge&sektion=4
https://www.freebsd.org/cgi/man.cgi?query=vxlan&sektion=4

	Introduction
	Document Conventions
	License

	Plain Jails
	Plain Jails Using Inherited IP Configuration
	Plain Jails Using a Dedicated IP Address
	Plain Jails Using a VLAN IP Address
	Plain Jails Using a Loopback IP Address
	Adding Outbound NAT for Public Traffic
	Running a Service and Redirecting Traffic to It

	VNET Jails and bhyve VMs
	VNET Jails Using sysutils/pot
	VNET Jails Using sysutils/iocage
	Managing Bridges

	Adding bhyve VMs and DHCP to the Mix
	Preventing Traffic Between VNET Jails/VMs
	Firewalling Inside VNET Jails/VMs

	VXLAN
	VXLAN Example Overview
	Gateway Configuration
	Jailhost-a
	Network Configuration (jailhost-a)
	VM Configuration (jailhost-a)
	Jail Configuration (jailhost-a)

	Jailhost-b
	Network Configuration (jailhost-b)
	Plain Jail Configuration (jailhost-b)
	Network Switch Setup (jailhost-b)
	VNET Jail Configuration (jailhost-b)
	VM Configuration (jailhost-b)

	VXLAN Multicast Troubleshooting

	Conclusion and Further Reading

